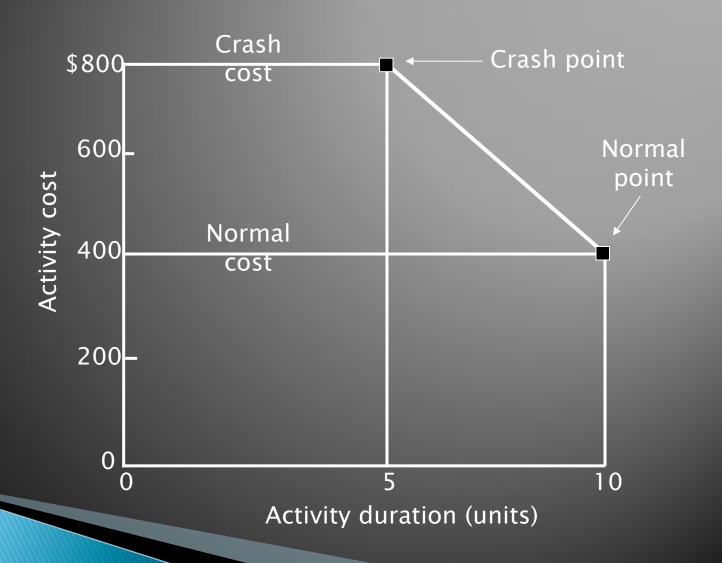

Percepatan Waktu Penyelesaian Proyek


Rationale for Reducing Project Duration

- Imposed project duration date
- Time to market
- Incentive contracts
- Delays
- Reassign key equipment and/or people to new projects

Project Cost-Duration Graph

Activity Graph

Assumptions

- The cost-duration relationship is linear
- Normal time assumes low cost, efficient methods to complete the activity
- Crash time represents a limit the greatest time reduction possible under realistic conditions.
- Slope represents cost per unit of time
- All accelerations must occur within the normal and crash time

Rumus

$$Cost Slope = \frac{Rise}{Run}$$

$$= \frac{Crash cost - Normal cost}{Normal time - Crash time}$$

Contoh sebelumnya:

Cost slope =
$$\frac{\$800 - \$400}{10 - 5}$$

$$Cost slope = \frac{$400}{5}$$

Cost slope=\$80 per unit of time

Options for Accelerating Project Completion

- Adding Resources
- Outsourcing Project Works
- Scheduling Overtime
- Establish a Core Project Team
- Do it Twice Fast and Correctly
- Fast-Tracking
- Critical Chain
- Brainstorming Time Savers
- Reducing Project Scope
- Phase Project Delivery
- Compromise Quality

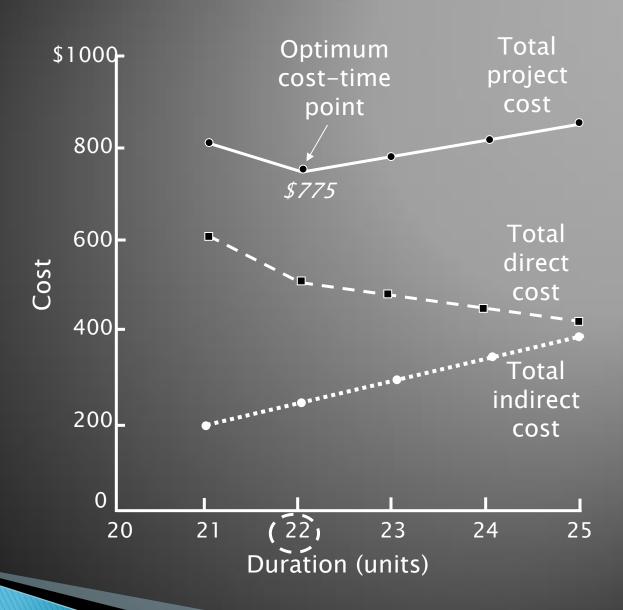
Practical Consideration

- Crash time
- Linearity assumptions
- Choice of activities to crash
- Time reduction decision and sensitivity

Constructing a Project Cost Duration Graph Find total direct costs for selected project

- Find total direct costs for selected project durations
- Find total indirect costs for selected project durations
- Sum direct and indirect costs for these selected durations

Cost-Time Trade-Off Example


Activity		Maximum	Direct costs			
Activity	Slope	crash	Normal		Crash	
		time	Time	Cost	Time	Cost
A	<u>20</u>	<u>1</u>	3	\$50	2	\$70
В	<u>40</u>	<u>2</u>	6	80	4	160
C	<u>30</u>	<u>1</u>	10	60	9	90
D	<u>25</u>	<u>4</u>	11	50	7	150
Е	<u>30</u>	<u>2</u>	8	100	6	160
F	<u>30</u>	<u>1</u>	5	40	4	70
G	0	_0	6	70	6	70

Total direct cost \$450

Summary Costs by Duration

Project	Direct	+ Indirect =	Total
duration	costs	costs	costs
25	450	400	\$850
24	470	350	820
23	495	300	795
23 (22) 21	525	250	(775)
21	610	200	810

Project Cost-Time Graph

